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Abstract—Hitherto unavailable analytical solutions to the boundary-value problem of moderately
thick general cross-ply laminated doubly-curved panels of rectangular planform, subjected to
various boundary conditions, are presented. The five highly coupled second-order linear partial
differential equations, that characterize the deformation of such laminates are solved in Part I of
the paper using a recently developed double Fourier series based approach, together with the SS1-,
$S2- and SS4-types of simply-supported and C4-type of clamped boundary conditions prescribed
at all four edges. The issues of derivation of the linear algebraic equations arising from these
boundary conditions, together with an efficient method of solving the complete system of linear
algebraic equations, convergence characteristics and other numerical results are addressed in the
accompanying Part II of this investigation.

1. INTRODUCTION

Curved panels (open shells) are common load-bearing structural elements in aerospace,
hydrospace, nuclear and other industrial applications. Recent years have witnessed an
increasing use of advanced composite materials (e.g. graphite/epoxy, boron/epoxy, Kevlar/
epoxy, graphite/PEEK, etc.) which are replacing metallic alloys in the fabrication of
such panels because of such beneficial properties as higher strength-to-weight ratios, longer
fatigue (including sonic fatigue) life, better stealth characteristics, enhanced corrosion
resistance, and, most significantly, the possibility of optimal design through the variation
of stacking pattern, fiber orientation, and so forth, known as composite tailoring. The
advantages that accrue from these properties are, however, not attainable without paying
for the complexities that are introduced by various coupling effects, first studied by Ambart-
sumyan (1953). Furthermore, since the matrix material is of relatively low shearing stiffness
as compared to the fibers, a reliable prediction of the response of these laminated shells
must account for transverse shear deformation. Additionally, a solution to the problem of
the deformation of laminated shells and panels of finite dimensions must satisfy the bound-
ary conditions, which introduce additional complexities into the analysis.

The majority of the investigations on cross-ply shells and panels utilize either the
classical lamination theory (CLT), which corresponds to the Love—Kirchhoff hypothesis
(Love’s first approximation theory) for homogeneous shells, or the first-order shear defor-
mation theory (FSDT), based on the Reissner-Mindlin hypothesis. Stavsky and Lowey
(1971), Jones and Morgan (1975) and Greenberg and Stavsky (1980) have ail used the CLT
in obtaining analytical solutions for the vibration and buckling of cross-ply cylindrical
shells. Soldatos and Tzivanidis (1982) have presented CLT-based analytical solutions for
the vibration and buckling of cross-ply cylindrical panels. Jones and Morgan (1975) and
Soldatos and Tzivanidis (1982) have used Donnell’s (1933) kinematic relations, while Stavsky
and Lowey (1971) and Greenberg and Stavsky (1980) have used a Love (1927)-type theory.
Soldatos (1984a) has presented a comparison of the fundamental frequency, computed
using four popular thin shell theories, namely those due to Donnell, Love, Sanders and
Flugge. Soldatos (1984b) has also used a second-approximation Flugge-type theory and
has presented results for the vibration of cross-ply oval (cylindrical) shells, using the
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approximate method of Galerkin. Iu and Chia (1988), in extending Chia’s (e.g. 1980)
earlier studies on plates, have resorted to Galerkin’s method [because the governing partial
differential equation (PDE) is not satisfied by the assumed beam functions, involving
hyperbolic sine and hyperbolic cosine] to obtain an approximate solution to the problem
of nonlinear vibration and postbuckling of thin unsymmetric cross-ply circular cylindrical
shells. Dong and Tso (1972) have developed a FSDT-based theory for cross-ply shells and
presented analytical solutions for the vibration of complete cylindrical shells. Sinha and
Rath (1976) have utilized FSDT in conjunction with Donnell’s (1933) kinematic relations to
obtain an analytical solution to the problem of a circular cylindrical panel under transverse
loading. Bert and Kumar (1982) have obtained analytical solutions to the problem of
vibration of biomodulus two-layer cross-ply thin cylindrical shells, using four tracers to
handle four popular theories, namely Sanders™ (1959), Love’s (1927), Morley’s (1959) and
Donnell’s (1933).

An indepth analysis of the literature reveals that although CLT-based analytical
solutions for rectangular cross-ply plates are available for various boundary conditions
[e.g. Whitney (1970) and Whitney and Leissa (1970)], including the clamped one, their
FSDT-based counterparts for curved panels (open shells) appear to be, in general, limited
to Navier- or Levy-type (including generalized Levy-type) solutions, where a specific type
of simply-supported boundary condition [designated SS3 by Hoff and Rehfield (1965)]
needs to be prescribed at either all four edges (Navier’s method) or two opposite edges
(Levy’s approach). Examples of the former include double Fourier series solutions (Sinha
and Rath, 1976), for cross-ply cylindrical panels with the SS3-type simply-supported bound-
ary conditions prescribed at all four edges, while the generalized Levy-type solution by
Librescu et al. (1989) and Khdeir et al. (1989) to the problem of a doubly-curved panel
with two opposite edges being invariably simply supported of the SS3-type, belong to the
latter category. Although a preliminary FSDT-based analysis of cross-ply doubly-curved
panels, with the SS2-type simply-supported boundary conditions were presented by the
authors (1987), it is the authors’ belief that a comprehensive and indepth treatment of the
subject, especially with other types of boundary conditions, e.g. all edges clamped, is still
nonexistent in the published literature. The primary objective of the present study is to
bridge this longstanding analytical gap.

Recently, Chaudhuri (1987, 1989) has presented a novel double Fourier series approach
for solution of a system of highly coupled linear PDEs with constant coefficients, satisfying
Dirichlet, Neumann, or arbitrary (mixed) boundary conditions. Although the boundary-
discontinuous Fourier series method has been applied by such earlier investigators as
Goldstein (1936, 1937), Green (1944), Green and Hearmon (1945), Winslow (1951),
Whitney (1970, 1971) and Whitney and Leissa (1970), the criteria determining when the
boundary Fourier series are needed or not needed, have never been clearly explained. A
clear exposition of this important topic is available in Chaudhuri (1989). The domain of
the problem is of rectangular planform. The five highly coupled second-order linear partial
differential equations, that characterize the deformation of doubly-curved cross-ply panels,
will be solved in Part I of this paper, using this approach (Chaudhuri, 1989), together with
the SS1-, SS2- and SS4-type simply-supported and C4-type clamped boundary conditions
prescribed at all four edges. The issues of derivation of the linear algebraic equations arising
from boundary conditions, together with an efficient method of solving the complete system
of linear algebraic equations, convergence characteristics and other numerical results are
addressed in the accompanying Part II of this investigation.

2. STATEMENT OF THE PROBLEM

Figure 1 shows the geometry of the doubly-curved cross-ply panel under consideration.
x, and x, are the lines of curvature of the middle (reference) surface, x; = 0. The x;
coordinate is normal to the mid-surface such that x,, x,, x; form a right-handed orthogonal
curvilinear coordinate system. The principal radii of curvature of the mid-surface are R,
and R, in the x, and x, directions, respectively. The analysis that follows is based on the
assumptions of (i) shallowness, (ii) transverse inextensibility, (iii) first-order shear
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Fig. 1. A doubly-curved panel of rectangular planform.

deformation theory (FSDT), and (iv) negligibility of geodesic curvatures of the surface-
parallel lines of curvature coordinates. Under these hypotheses, the kinematic relations are
given by

0 0
gy =&1+Xsky, & =el+X3ky, &4 =84 €5 =85, £ =EQ+X3Ks, 6]
in which ¢ and ¢, i = 1,2,6, represent the surface-parallel normal and shearing strain
components at a parallel surface and mid-surface, respectively, while ¢;, &! (i = 4, 5) rep-
resent the corresponding transverse shearing strain components. x; (i = 1,2, 6) denote the

changes of curvature and twist.
0 0 0
el = u +us/Ry, & =uy,+us/Ry, € =us3+¢,—uy/Ry,
0 0
es=us 1+, —u /Ry, eg=u+us;, K=¢,,

Ky =22 Kg=¢y 1+ +c(uy,—uz)), 2

in which ¢ denotes the constant

11 1
= _ 3
‘T2 (Rl R) ®
and a comma denotes partial differentiation. w; (i = 1,2,3) and ¢, (i = 1,2) denote the
displacement and rotation respectively in the ith direction. The equations of equilibrium,
using Sanders’ (1959) shell theory are given by
Niyi+Nea+cMer+Q1/Ry =0, Q,,+Q2,—N/R—N,/R,+q=0,
Nei—cMe i +Npp+Q2/Ry =0, M| +Me,—Q, =0, Mo, +M,,—Q0,=0. (4
Equations (1)—(4) can be specialized to flat plates, cylindrical shells and spherical shells, by
setting 1/R, = 1/R, =0, 1/R; =0, R, = R and R, = R, = R, respectively. For a general
cross-ply shell (Jones and Morgan, 1975), surface-parallel stress resultants, N,, stress couples
(moment resultants) M, and transverse shear stress resultants, Q,, are related to the mid-
surface strains, ¢, and changes of curvature and twist, x;, by
N, = Aij£j°+Binj, G,j=12), No = Ageed + Byoko,
M,- = Bijﬁ})+Dinj, (l,j = 1, 2), M6 = BGGK6+D66K69
Q) = Asses, 0, = A g,
Ass = KiAss, Aqs = K34, &)
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Here A, B, Dy, i, j = 1,2, 6, are extensional, coupling and bending rigidities respectively,
and A} (no sum, i = 4,5) represent transverse shear rigidities. It may be noted that the
above quantities refer to cross-ply properties following the lines of curvature of the shell.
K?, i=1,2, represent the shear correction factors.

Substitution of eqns (2), (5) into eqn (4) yields five coupled PDEs with constant
coefficients, which can be written in the matrix operator form:

Lv=f, 6)
where
L,‘]'=Lji, l,]= 1,---35’ vT= {ulau29u3s¢l,¢2} and fT: {0,0,(],0,0}. (7)
Denoting
9 o ., 0 e, &
E =0, 5)2 51, ag = az, ag = 62, 6x1 x5 = alaza
the elements of L can be written as follows:
Lll = G(19 1)+G(1’2) 6%+G(]53)a§.5 L12 = G(134)01629 L13 = G(I’S),
L,=G(1,6)+G(1,7)01+G(1,8)8%, L,s=G(1,9)0,0,,
Lzz = G(2, 2)+G(2, 3) 6%+G(2,4) 6%, L= G(2, 5) 52, L24 = G(2, 6)5162,
Ly, = G(3,6) 51, Lys= 6(3, 7) az, Ly = .G(4, 6)+G(4, 7) 6%+G(4, 8) 0%,
Lys=G(4,9)0,0,, Lss=G(5,7)+G(5,8)0i+G(5,9) 03, (8)

where the nonzero constants G(i, j),i = 1,...,5,j = 1,2,3,... are as defined in eqns (A11)
of Appendix C. The five boundary conditions at an edge, x, = constant, are chosen to be
one member from each pair of

(umNn) = (uta Nl) = (ub Qn) = (d)mMn) = (¢UM!) = 05 (9)
where subscripts n and t denote normal and tangential directions to an edge. For example,
at an edge, x, = constant, u,, u, ¢, ¢, Ny, N, M,, M, and Q, correspond to u,, u,, ¢,
¢, N, Ng, M|, M and Q,, respectively. The various simply-supported and clamped
boundary conditions at an edge, x, = constant, may be listed as follows (Hoff and Rehfield,
1965 ; Chaudhuri and Abu-Arja, 1988, 1989):

(8S1,Cl): Ny=N,=us;=M,, ¢,) = ¢, =0, (10a)
(882,C2): u,=N,=u;=(M,, ¢,) =¢. =0, (10b)
(8S3,C3): Ny=u=uy=M,, ¢,) = ¢, =0, (10c)
(SS4,C4): w,=uy=u;=(M,, ¢,) =, =0. (10d)

3. METHOD OF SOLUTION

The present solution strategy is based on a recently developed double Fourier series
approach (Chaudhuri, 1989) for the solution of a system of highly coupled PDEs with
constant coefficients, subjected to Dirichlet, Neumann or mixed boundary conditions. This
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method facilitates the well-posedness of the Fourier analysis through selection of the
coefficients of the assumed double Fourier series solutions for the unknown functions and
introduction of certain boundary-discontinuous Fourier coefficients, so that the number of
equations becomes equal to the number of unknown coefficients to furnish a complete
solution. The presence of discontinuities of the assumed solution functions or their first
derivatives at the boundaries, which yield additional unknown coefficients, is handled by
utilizing a mathematical approach, discussed by Hobson (1926) and utilized by Goldstein
(1936, 1937) in the context of the direct use of ordinary Fourier series to solve the stability
of fluid flow. Green (1944) can be credited with the first direct use of double Fourier
series for solution to the problem of a clamped isotropic plate. Winslow (1951), following
Hobson’s (1926) lead, has discussed the mathematical conditions of differentiation, of stress
functions and their partial derivatives represented by ordinary Fourier series, in the presence
of “ordinary” [in the sense of Hobson (1926)] discontinuities and has concluded that unless
additional conditions imposed by termwise differentiation are fulfilled, the hypothetical
representation by Fourier series may not have sufficient generality to satisfy all the required
conditions and furnish a solution.

Green and Hearmon (1945) and Whitney (1971) have extended the double Fourier
series approach of Green (1944) to solve the problems of symmetrically laminated thin
anisotropic plates with simply-supported and clamped boundary conditions, respectively.
Whitney (1970) appears to be the first to apply this technique to the analysis of thin
unsymmetric cross-ply plates. Whitney and Leissa (1970) have obtained analytical solutions
to the problems of antisymmetric cross-ply and angle-ply thin plates, subjected to SS1
boundary conditions, using the same double Fourier series approach, which may be
regarded as an extension of the work of Green (1944) and Winslow (1951). A problem of
the type studied by Green (1944), Green and Hearmon (1945), and Whitney (1971) is
characterized by one fourth-order PDE in one unknown—the transverse displacement, u5,
while the type studied by Whitney and Leissa (1970) is characterized by two coupled fourth-
order PDEs in two unknown quantities—the transverse displacement, u,, and inplane stress
function, ¢. In contrast, the problem of a thin unsymmetric cross-ply plate, studied by
Whitney (1970), is characterized by three coupled PDEs in three unknown mid-surface
displacements, u,, u,, u;, while the present problem is mathematically represented by five
highly coupled second-order PDEs in five unknown displacement and rotations, namely,
Uy, Uy, U3, ¢ and ¢,.

The solution is assumed to be as follows :

@007 G1 X)) = S Un; o) €08 () sin (Bo),

m=0 n=1\

200 %2); 02060 50) = 3. T (Vi ¥ sin (o) 05 (Bo%2),

m=1n=0
u3(x1’x2) = Z z Wmn sin (amxl) sin (ﬂnx2)’ (1 1)
m=1n=1
where
%y = mnja, B, = nn/b. (12)

If an assumed solution function fails to satisfy a prescribed geometric boundary condition
at an edge, then it is forced to satisfy this boundary condition at that edge. However,
“ordinary” discontinuities may still arise in (i) the first derivatives, of the same function,
at that edge, (ii) the same function and/or its first derivatives at other edges, and (iii) other
functions and/or their first derivatives. The corresponding first or second derivatives are
then obtained by expanding them in double Fourier series in the form suggested by, e.g.,
Hobson (1926), Goldstein (1936, 1937), Green (1944), Green and Hearmon (1945), Winslow
(1951), Whitney (1970, 1971), Whitney and Leissa (1970), Chaudhuri (1987, 1989) and
Chaudhuri and Abu-Arja (1988), wherein “ordinary” discontinuities are accounted for.
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This procedure will be illustrated in the cases of $S1, $S2, S84 and C4 boundary conditions,
prescribed at all the four edges. Solutions for the remaining cases can be obtained following
a similar approach and are omitted in the interest of brevity of presentation.

SS1 boundary conditions

In this case, all the first and second derivatives of u, can be obtained by term-by-term
differentiation. However, the same is not true for the remaining functions, because some
physical conditions are violated by some of these functions and/or their derivatives at some
or all of the edges. The procedure is illustrated for the assumed solution function u,(x,, X2},
given by

u(x,x) =3 Y Upcos(@,x)sin(f,x,), 0<x, <a,0<x,<b (132

m=0 n=1

as follows:

The two first partial derivatives follow directly from eqns (A2b,c), (A6) and (A9) and can
be written as

ul,l(xl!xZ) = - z Z Umn“m Sin(amxl)Sin (ﬂnx2)$ 0< Xt <a;0 <X < bs (le)
m=1] n=1
}- o

1 1 @
U (x1,x;) = 2%+ 5 Y 4 COS (Xx1) + 5
m=1

[ﬁn UOn + Yno + 'I’nbol cos (ﬁnxz)
1

H=

+ 3 Y Bl + 72t +Unb] 08 () CO8 (Brx),  (130)

m=1n=1
in which

©0,1) ifmisodd,
Gms¥m) = (1,0) ifmiseven. @

Extension of the above to the second derivatives is straightforward [see Chaudhuri (1989)],
e.g.

1 o0 a0 [ 4
(X, x2) =3 Y casin(Bux)+ Y Y [— 02 Unn+ YCn+ Yty €OS (&) sin (B,X5).
n=1

m=1n=1

(15

The constant coefficients a,,, b, ¢,, d, in eqns (13¢), (15) are as defined in eqns (Bla, b)
in Appendix B. Derivatives of other functions (u,, ¢, and ¢.) can be obtained in a manner
similar to the procedure adopted for the derivatives of u, as shown in eqns (13c), (15). This
procedure, when applied to the other assumed functions, leads to four more pairs of
constant coefficients, defined by eqns (Blc-f): the two pairs, (e,, 1), (i,, j,} for each n,
being associated with u, and ¢, ,, respectively along the boundaries x, == 0, 4; while the
remaining two pairs, (g, An)s (km»i.) for each m, being associated with u,, and ¢;,
respectively along the boundaries x, = 0, b.

Expansion of the transverse loads g(x,, x,) into double Fourier series

G x) = 3 G sin (o) sin (Brxa), (16)
1

m=1 n=

and substitution of the assumed functions and their derivatives into eqns (6)—(8) finally yield,
on equating the coefficients of cos (&,,x) sin (8,x,), sin (a,,x) cos (8,x,), etc., Smn+2m+2n
simultaneous linear algebraic equations. In the interest of brevity, the procedure is illustrated
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only for the first and third of the five equilibrium equations (6)~(8), which yield the
following:

[G(1, 1) - G(1,2)02 — G(1,3) B2 Umn— G(1, )tV + G(1, 5) Wi,
+[G(1,6)~G(1, Nag, — G(1, 8) 81 Xy — G(1, 9% B Youn — G (1, 3)B, 70
~G(1,3)Bniinbm+ G(1, Dyt G(1, )Y mdy— G(1, D) Brymen— G(1, ) By
+ G, T mbn+G(L, Tjn = 0, (17)

[G(1, 1) —3G(1,3)B71Uo, +[G(1, 6) — G(1, )81 X0, — 3G(1, 3) Bivato
—3G(1,3)Babo +1G(1,2)c, —1G(1, H)Beo +31G(1, i, = 0, (17b)

- G(Sa l)am Umn - G(3§ 2)ﬁn an + [G(39 3) - G(33 4)“!%1 - G(3’ 5)33] Wmn - G(3s 6)amen
- G(3’ 7)ﬂn an = Gmn- (170)

SS2 boundary conditions

As in the preceding case, the first and second partial derivatives of the assumed
displacement function u, can be obtained by term-by-term differentiation. Discontinuities
in the remaining assumed displacement functions and their derivatives are manipulated in
a manner similar to the SS1 boundary condition, resulting in an identical number of total
unknown constant coefficients. The governing partial differential equations (6)—(8) supply a
set of Smn -+ 2m+ 2n linear algebraic equations, similar, in nature, to their SS1 counterparts.

S84 boundary conditions

In this case, the geometric boundary conditions pertaining to u, (at x, = 0,5) and u,
(at x; = 0, @) are satisfied a priori, while those relating to u;, ¢, and ¢, are similar to their
SS1 and SS2 counterparts. Partial derivatives of the assumed displacement functions, and
the resulting linear algebraic equations, obtained by way of satisfying the governing PDEs
(6)—(8) are identical to their SS1 counterparts, with the exception of vanishing of the
constant coefficients q,,, b,,, €, and f,.

C4 boundary conditions

The C4 boundary condition, prescribed at all four edges, is called the Dirichlet type in
the mathematical literature. The procedure for differentiation of the assumed double Fourier
series solution functions for this type of boundary condition has been described in detail
by Chaudhuri (1989). As in the preceding three cases, the first and second derivatives of u;
can be obtained by term-by-term differentiation. However, the same does not hold for the
second derivatives of u, ;y, 45 22, 1,11 and @, ,,, which are similar to their SS1 counterparts.
The resulting Smn+ 2m--2n linear algebraic equations, obtained by way of satisfying the
governing PDEs (8)—(10) are similar to their SS4 counterparts.

4. DISCUSSION

The above procedure results in 5mn+2m+2n linear algebraic equations in terms of
Smn+8m--8n+4, Smn+8m+8n+4, 5Smn+ 6m+ 6n, and 5mn+ 6m+ 6n unknowns for SS1,
§S2, SS4 and C4 boundary conditions, respectively. The remaining equations are supplied
by imposing the prescribed geometric and natural (whenever applicable) boundary
conditions. This step will supply 6m+6n+4, 6m+6n+4, dm-+4n and 4m+4n linear
algebraic equations for the SS1, $S2, SS4 and C4 boundary conditions, respectively, the
details of which will be presented in the applications phase, i.e. Part II of this investigation.
This procedure will finally result in systems of 5mn+8m+8n+4, 5mn-+8m+8n+4,
Smn+6m+ 6n and Smn+6m+ 6n linear algebraic equations in as many unknowns for the
$81, SS2, 884 and C4 boundary conditions, respectively.

SAS 30:2-1



276 R. A. CHaupbnuri and H., R. H. Kasr
5. CLOSURE

A general procedure for obtaining analytical solutions to the hitherto unsolved boun-
dary-value problems of finite general cross-ply doubly-curved panels of rectangular plan-
form and subjected to transverse loads, is outlined in this paper. This method facilitates the
well-posedness of the formulation through selection of the coefficients of the assumed
double Fourier series solutions for the unknown functions and introduction of certain
boundary-discontinuous Fourier coefficients, so that the number of equations becomes
equal to the number of unknown coefficients to furnish a solution. Although the present
paper discusses only three types of simply-supported and one type of clamped edge
conditions, the scope of the approach presented herein is general enough to include any
arbitrary type of admissible boundary conditions. Implementation of the present approach
and suitable numerical examples illustrating its applicability to the four types of boundary
conditions discussed herein will form the subject matter of the accompanying Part II of this
investigation.
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APPENDIX A
The differentiation of full-range double Fourier series
For the purpose of illustrating the approach, u,(x,, x,), which, as defined in eqns (11), is an even function
with respect to x, and an odd function with respect to x,, is considered :

(%), —X2) = —u;(xp, X2) = —u,{—Xxy, X3). (Al)

The full-range double Fourier series expansion for the function and its two first partial derivatives are as follows :

wixex) =Y Y Uycosa.x)sin(B.x,), (A2a)

m=0 nml
“1.3(x15x2) = 2 Z Bmﬁn(amxi)ﬁn(gr‘})’ (Azb)

m=1 pw |
“l,2(xhx2) = Z Z Cmcos(amxi)cos(ﬁnxz)s (AZC)

m={ n=Q

wherein
1 {* (4

U,,,,, == EJ‘ J‘b ll](xl,xz)cos (a,,,x,)sin (ﬁ,,xz)dxl dxz, for m,n == la 2, seey 00, (AB)

Utns By Cos Coms Creo @and Cig can be similarly defined. Integration by parts of the right-hand side of eqn (A3)
yields the following :

1 " & . .
B, = —tUpn+ 53.{ LZ! {10100, X2) 1) (x19+0, x2)} sin (a...xm)]sm (Bux2) dxa,

—b

for myn=1,2,...,, (Ada)

I a
Com = BaUpm+ Eji {#1(x1,5-0) —ui(x, —b+0)}H(—1)" cos (anx,) dx;

o 4

i
Y {101, Xoq—0) — 141 (x, x5+ 0)} sin (B, x2) cos (wnx,) dxy, for myn=1,...,00. (Adb)

+.._
ab |-, =

Similar expressions can be obtained for Cy,, C,; and Cyp. X, = X4 and x, = X, in eqns (Ada, b) represent lines
of discontinuities, while 4™, i = 1,2, denotes the number of discontinuities in the x, direction.

Differentiation of half-range double Fourier series

The present solution, e.g. #,(x, x;), given by eqns (15) is represented by a double Fourier series in the domain
(0, a) x (0, b), the lengths of the intervals in the directions x, and x, being one-half of the full ranges of intervals
of periodicity 2a and 2b, respectively. #;(x,, x,), in addition to being an even function of x, and an odd function
of x, as stated earlier, is also continuous in the interior of the domain (0, 4) x (0, b), and does not vanish at the
edges, x, = 0, b. Substitution of

A% =1, x,=0, 4,(0=0,x;) =u,(0+0,x,) (A5)
into eqn (Ada) yields

Bop = —apUpm, (A6)
which impli;s tha@ the first Qartial derivative, u, ,(x,, x,), can be obtained by tern.wise differentiation of the half-
range Fourier series expansion of #,(x,, x,). However, the other first partial derivative, u, ;(x;, x,), cannot be

represented by the termwise differentiation of the series, because u, ;(x,, x,) has ordinary discontinuity at the line
X, = 0 and also because

(x5, b—0) # u,(x;, ~b+0) # 0. (A7)
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The Fourier coefficients for u, ,(x,, x,) must then be obtained by substituting in eqns (A4)

d¥? =1, xy=0 and u(x,, —b+0) = —u,(x;,6—0), #,(x,,0~0) = —u,(x,,0+0) (A8)
which finally yields

4 #
C,,m=ﬁ,,U,,,,,+EEJ {1, (1, b—0)(— 1Y —u, (x,,0+0)} cos (2, ) dx,, for mmn=12,...,00. (A9)
1]

Similar expressions can be obtained for C,, C,, and Cy, {see Chaudhuri (1989)].

APPENDIX B

The unknown Fourier coefficients, arising from discontinuities [in the sense of Hobson (1926)] at the edges,
are defined as follows:

() = %L [0, B) =0, 01005 (51) ds, ®1)
4 [
(¢pndy) = il [ uy (g, x2) —u 1 (0, x2)] sin (B,x;) dix,, (Blp)
4 [t
(e 1) = N [£ua(a, x3) —~ua(0, x2)] cos (B,x2) dx,, (Blc)
J
4 f« .
(gmvhm) = ‘E A [iuZ.Z(xhb)—uZVZ(xho)] sm (amxl)dxh (Bld)
4 [
(imjn) = 3—5 A {i¢t.l(asx2)_¢l.l(0vx2)} Sin (,anﬂ dxz’ (Ble)
4 [= .
(ks ) = EJ; [+ da2(x1,8) —2:(x), 0)] sin (a,,x,) dx,. (BIf)
APPENDIX C

The nonzero constants G(i, /); i = 1,5and j = 1,2,.. ., referred to in eqn (8) are as given below:

A
G, D= -3, G(LY =4y, G(1,3) = Ag+2¢Bes+c*Des,

R’
A A A A
- —p? _an 2 sss =38
G(14) = s+ A=y, (1,9 = L+ B+ 52, 616 =32,
G(1,7) = By, G(1,8) = Bys+cDyq, G(1,9) = Biy+Bee+¢Dss, (Cla)

A
G2 1) = G(1,4), G(2.2) = —7(‘7“, G(2,3) = Ags—2cBos+¢ Dy,
2

A, Ay Ay
G(2,4) = Ay, GR5 ==+ 4 —,
2.4 m G@5) R, R, R,

G(2,6) = Bip+ Bgs—cDgss

GQ2,7) = %, G(2,8) = Bes— Dy, G(2,9) = Baa, (Clb)

4, 24 An
R} RR, R/

G3,. D = ~G(1,5), G(3,2)=-G(2,5), G@3,3)= —-(

; Bll Blz
G(3,4) = Ass, G(3,5) = Ays, 6(3, 6) =Ass= 5= — 5>
R, R,
= Bi: B Clc
G(3,7) = Agu— R R (Clo)
G@4,1) = G(1,6), G(4,2) =B, G(4,3) = Bsy+cDqs,
G(4,4) = G(2,6), G(4,5) = —G(3,6), G@4,6) = —4;;,
G@, 7 =Dy, G@&,8) =Dy, G@,9) =D+ D, (Cid)

A
G5, 1) = Bos+Bi+cDss, G(5,2) =72, G(53)=GQ28), G(5.4) =Bu,
2

G(S, 5) = w'G(s, 7), G(S, 6) = 6(4»9)3 G(S; 7) = _A-Nx 6(5,8) = D669 G(Sa 9) = 1)22' (Cle)



